Supplementary

The Wavelet Transform



Jean Baptiste Joseph Fourier (1768 — 1830)

MGP (Mathematics Genealogy Project): Leibniz - Bernoulli - Bernoulli - Euler - Lagrange - Fourier — Dirichlet -

1787: Train for priest (Left but Never married!!!).
1793: Involved in the local Revolutionary Committee.
1974: Jailed for the first time.

1797: Succeeded Lagrange as chair of analysis and mechanics at Ecole
Polytechnique.

1798: Joined Napoleon's army in its invasion of Egypt.

1804-1807: Political Appointment. Work on Heat. Expansion of
functions as trigonometrical series. Objections made by Lagrange
and Laplace.

1817: Elected to the Académie des Sciences in and served as secretary
to the mathematical section. Published his prize winning essay Théorie
analytique de la chaleur.

1824 Credited with the discovery that gases in the atmosphere might
Increase the surface temperature of the Earth (sur les températures du
globe terrestre et des espaces planétaires ). He established the concept
of planetary energy balance. Fourier called infrared radiation "chaleur
obscure" or "dark heat”.




Dennis Gabor
Windowed (Short-Time) Fourier Transform (1946)

Winner of the 1971 Nobel Prize for contributions to the principles underlying the
science of holography, published his now-famous paper “Theory of Communication.”2

James W. Cooley and John W. Tukey
Fast Fourier Transform

James W. Cooley and John W. Tukey, "An algorithm for the machine
calculation of complex Fourier series," Math. Comput. 19, 297-301 (1965).

Independently re-invented an algorithm known to Carl Friedrich Gauss .
around 1805 C. F. Gauss

Jean Morlet

Presented the concept of wavelets (ondelettes) in its present theoretical form when he
was working at the Marseille Theoretical Physics Center (France). (Continuous Wavelet
Transform)

Stephane Mallat, Yves Meyer

(Discrete Wavelet Transform) The main algorithm dates back to the work of
Stephane Mallat in 1988. Then joined Y. Meyer.


http://euler.ciens.ucv.ve/matematicos/images/gauss.gif

Motivation

Some signals obviously have spectral
characteristics that vary with time



STATIONARITY OF SIGNAL

« Stationary Signal

— Signals with frequency content
unchanged in time

— All frequency components exist at all
times

Fres = 14.6831 Hz, Tres =100 ms

 Non-stationary Signal N ﬂ ﬂ"l“
— Frequency changes in time | Il

— One example: the “Chirp Signal” | U |

‘. 11l




STATIONARITY OF SIGNAL

2 Hz + 10 Hz + 20Hz

Stationary

0.0-0.4: 20 Hz +
0.4-0.7: 10 Hz +
0.7-1.0: 2 Hz

Non-
Stationary

Magnitud

Magnitud

-0.4

Magnitud
53

'J
0 0
0 0

Magnitud

A
0
o}

i]
0 0
0 0

/\

|

|

|

|

|

i

|

|

]

L

__

-

10 15 20
Freauencyv (Hz)

/

|

/

\

|

5Freqﬁgncyl(ﬁz) =



CHIRP SIGNALS

Frequency: 2 Hz to 20 Hz
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At what time the frequency components occur? FT can not tell!



Decomposition atlevel5:s a5+ d5+dd+d3+d2 + 1.




Fourier Analysis

= Breaks down a signal into constituent
sinusoids of different frequencies

“W M\W’WMM I | s I

Time Frequency

-

Amplitude
Amplitude

In other words: Transform the view of the signal
from time-base to frequency-base.



The Fourier Transform (FT)

= A mathematical representation of the Fourier
transform:

Q0

F(w) = j f (t)e ™dt

= Meaning: the sum over all time of the signal f(t)

multiplied by a complex exponential, and the
result is the Fourier coefficients F(w) .



Fourier Transform

= Those coefficients, when multiplied by a sinusoid of
appropriate frequency w, yield the constituent
sinusoidal component of the original signal.

[ R Fourier
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Signal Constituent sinusoids of different frequencies



What's wrong with Fourier?

= By using Fourier Transform , we lose the time
iInformation : WHEN did a particular event take
place ?

= FT can not locate drift, trends, abrupt changes,
beginning and ends of events, etc.

= Calculating use complex numbers.




* Dennis Gabor (1946) Used STFT

Short Time Fourier Transform

— To analyze only a small section of the signal at a time -- a technique called

Windowing the Signal.

« The Segment of Signal is Assumed Stationary

A 3D transform

Amplitude

window

Time

Frequency

Time

STRT!(t, )= [[x(t)e o' (t—t)]e e 7" dt

t
o(t): the window function

A function of time
and frequency



STFT (or: Gabor Transform)

= A compromise between time-based and frequency-based
views of a signal.

= both time and frequency are represented in limited
precision.

= The precision is determined by the size of the window.

= Once you choose a particular size for the time window - It
will be the same for all frequencies.




What's wrong with Gabor?

= Many signals require a more flexible approach - so we
can vary the window size to determine more accurately
either time or frequency.




What is Wavelet Analysis ?

m And...what is a wavelet...?

WV

ne Wave Wavelet (db10)

= A wavelet is a waveform of effectively limited

duration that has an average value of zero.




Wavelet's properties

OShort time localized waves with zero integral value.
OPossibility of time shifting.

OFlexibility.



Fourier vs. Wavelet

O FFT, basis functions: sinusoids

O Wavelet transforms: small waves, called wavelet
€ FFT can only offer frequency information

& Wavelet: frequency + temporal information

O Fourier analysis doesn’t work well on discontinuous, “bursty” data
O music, video, power, earthquakes,...

11/22/2024
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Scale

Scale
— S>1: dilate the signal
— S<1: compress the signal

Low Frequency -> High Scale -> Non-detailed Global View of
Signal -> Span Entire Signha
High Frequency -> Low Scale -> Detailed View Last in Short
Time

Only Limited Interval of Scales is Necessary




Comparison of resolution

 Windowed Fourier Transform

Mixer-STFT

400

Hz

200

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Sec

Fig. 18 the result using Windowed Fourier Transform

21



Comparison of resolution

 Discrete Wavelet Transform

Mixer-Morlet

400

Hz

200

0 0.2 0.4 0.6 0.8 1 1.2 1.4
sec

Fig. 19 the result using Discrete Wavelet Transform
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STFT and Wavelets

vy
N

frequency

) | | frequency
F 3

_--
time
short-time Fourier transform

vwavelet transform
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What Is wavelet transform?

O Provides time-frequency representation

O Wavelet transform decomposes a signal into a set of basis
functions (wavelets)

O Wavelets are obtained from a single prototype wavelet ¥(t) called
mother wavelet by dilations and shifting:

V() = %w(%)

O where a is the scaling parameter and b is the shifting parameter

24



Wavelet Transform

m The result of the Continuous WT are Wavelet
coefficients .

= Multiplying each coefficient by the appropriately scaled
and shifted wavelet yields the constituent wavelet of
the original signal.:

/’f \&\ / \\ Wavelet L\,
\
A “ﬂﬁ“
\/\\ / Y /ﬂ\\ / Ty
] x\/ Transform ,J\rr
\/ J

Signal Constituent wavelets of different scales and positions



Scaling

= Wavelet analysis produces a time-scale view of the
signal.

= Scaling means stretching or compressing of the
signal.

= scale factor (a) for sine waves:

//\\\J/ fo=sin(t) ; a=1
‘o 1 fo=sin(2t) ; a= %
foy=sIn(4t) ; a= %



Scaling (Cont'd)

m Scale factor works exactly the same with wavelets:

| fo=Y@) ; a=Y
P ; a=Y,

f




Wavelet function

* b — shift
(x)_ 1 (X—b ) coefficient
\IJa’ b \E T a - a-—scale
coefficient

_ -b .
LPa,bx,by(x,y)_ LLI”(X bx, ) y) « 2D function

]




Wavelet Transform

ontinuous \Wavelet Transform ( )
* Discrete Wavelet Transform (DWT)

29



Basis Functions Using Wavelets

OLike sin( ) and cos( ) functions in the Fourier Transform,
wavelets can define a set of basis functions y,(t):

f(t)=2 aw. ()

OSpan of Y, (t): vector space S containing all functions f(t)
that can be represented by g, (t).



Basis Construction — “Mother” Wavelet

The basis can be constructed by applying translation and
scaling (stretch/compress) on the "“mother” wavelet y(t):

Example:

W(t)

scale

translate



Continuous Wavelet Transform (CWT)

translation parameter ~ Scale parameter scale =1/2)
(measure of time) (measure of frequency) (1/frequency)

\/

Forward t—7
CWT- C(z,s) = ( - jdt

/ mother wavelet (i.e.

normalization window function)
constant



Five Easy Steps to a Continuous Wavelet Transform

1. Take a wavelet and compare it to a section at the start of the
original signal.
2. Calculate a correlation coefficient c

Wavelet =

C = 00102 C(z,9) =%f f(t)y (—j dt

11/22/2024
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Five Easy Steps to a Continuous Wavelet Transform

3. Shift the wavelet to the right and repeat steps 1 and 2 until you've covered the
whole signal.

)
>

Signal

Waveleat [::>

4. Scale (stretch) the wavelet and repeat steps 1 through 3.

=

Signal

Wavelet

C =0.2247
5. Repeat steps 1 through 4 for all scales.

11/22/2024
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Resolution of Time and Frequency

Better time resolution;
Poor frequency
resolution

Frequency

Better frequency
resolution:
Poor time resolution

Time

- Each box represents a equal portion
» Resolution in STFT is selected once for entire analysis



Visualize CTW Transform

« Wavelet analysis produces a time-scale view of the input
signal or image.




Properties of Wavelets

 Simultaneous localization In time and scale

- The location of the wavelet allows to explicitly represent the location
of events in time.

- The shape of the wavelet allows to represent different detail or
resolution.




Properties of Wavelets (cont’'d)

« Sparsity: for functions typically found in practice,
many of the coefficients in a wavelet
representation are either zero or very small.

(1) = % [[ce S)l//(t_TT)deS



Properties of Wavelets (cont’'d)

« Adaptability: Can represent functions with
discontinuities or corners more efficiently.

* Linear-time complexity: many wavelet transformations
can be accomplished in O(N) time.



Discretization of CWT

It is Necessary to Sample the Time-Frequency (scale) Plane.

At High Scale s (Lower Freguency f ), the Sampling Rate N can be
Decreased.

The Scale Parameter s is Normally Discretized on a Logarithmic Grid.

The most Common Value is 2.
The Discretized CWT Is not a True Discrete Transform

Discrete Wavelet Transform (DWT)

— Provides sufficient information both for analysis and synthesis

— Reduce the computation time sufficiently

— Easier to implement

— Analyze the signal at different frequency bands with different resolutions
— Decompose the signal into a coarse approximation and detail information



Discrete Wavelet Transform (DWT)

a, = Z f (), ()  (forward DWT)
()= ;JZajk%—k () (inverse DWT)

where Wik (1) = Zj/ZW(th - k)



DFT vs DWT

 DFT expansion:

Jj2mux /

N-1 Jj2mux
f(x)= 2 F(u)e ¥ , or f(t)zzall//l (t)
|

1i=0

« DWT expansion

/

F(t)= Zzajijk (t)



Haar Wavelets

B Scaling functions
Haar scaling function is defined by

(1 for 0<x<1
0 otherwise

#(x) =

and is shown in Figure 1.

Some examples of its translated and scaled versions are
shown in Figures 2-4.



0
| | | | | | 1 | | | | | |
0 0.5 1 15 2 2.5 0 05 1 15 2 25
Fig.1: Haar scaling function ¢(x). Fig.2: Haar scaling function ¢(x-1).
1
0
| | | | | |
0 05 1 15 2 2.5 -1 : : : : : :

0 0.5 1 15 2 2.5
Fig.3: Haar scaling function ¢(2x). Fig.4: Haar scaling function ¢(2x-1).



« 2D Haar scaling:

« 2D Haar wavelets:




m \Wavelets
1. The Haar wavelet y (X) is given by

-

1 for 0<x<3
w(X) =4 -1 for 3<x<1
0 otherwise

\

and is shown in Figure 5.
2. The two-scale relation for Haar wavelet is

v (X) = ¢(2X) - p(2x-1).



0 0.5 1 1.5 2 2.5

Figure 5: Haar Wavelet vy (X) .



Wavelet expansion

« Wavelet decompositions involve a pair of
waveforms:

encodes low ('[) ('[) encodes details or
resolution info v high resolution info

(1) =D cep(t—K)+ > > d (2t -k)

/

Terminology: scaling function wavelet function



1D Haar Wavelets

» Haar scaling and wavelet functions:

¢(t)

computes average
(low pass)

y(t)

computes details
(high pass)



Haar Filter Bank

* The simplest orthogonal filter bank is Haar
* The lowpass filter Is

1

ho[n]: ﬁ’ n=0,—1
0, otherwise
* And the highpass filter
1 n=0
i
1
h[n]= —ﬁ, n=-1

0, otherwise




Two-Channel Filter Banks

b IHo), IHy()

high
band

low
band:

T
2



The Haar wavelet
/AN ANYAN

1910: Alfred Haar discovers the Haar wavelet
dual to the Fourier construction \/ \_/ \/ \/
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The Haar wavelet

Basis functions i

1 0=<t<0.5
y(t) = <-1 05=<t<1

0 else / \ i

—111

v (1) =2y )

m, 1

Compute WT on a discrete grid

scale = Shift
m = -1 L] [ ] ] & [ L] [ [ ] & [ ] ® L

m=20 L L ] [ ] [ ] & ]

n=1 » [ ]




Haar transform




Haar Wavelet Transform

* Find the average of each pair of samples

« Find the difference between the average and sample
 Fill the first half with averages

* Fill the second half with differences

« Repeat the process on the first half

e Step 1.
3 5 4 8 13 7 5 3]
Averaging L || L

a
",
Yy
oy
.

L ]
N
®

D

[4 6 10 4 -1 -2 3 1]

99



Haar Wavelet Transform
¢ Step 2

[4 6 10 4 -1 -2 3 1]
L ||

Averaging l ‘Differencing

&
ey
Yy

5 7 -1 3 -1 -2 3 1]

ex.(4+6)/2=5
4-5=-1

56



Haar Wavelet Transform
¢ Step 3

5 7 -1 3 -1 -2 3 1]
|

a
,
Yy

Averaging Differencing

L]

)
LT
Y,
4,
Ty
'.

E61131231]

R > TOw average

ex.(5+7)2=6
5-6=-1

o7



Wavelet Transform Example

e Suppose we are given the following input sequence.
{x,;} =1{10, 13, 25, 26, 29, 21, 7, 15}

« Consider the transform that replaces the original sequence with its pairwise
average X,_,,I and difference d,_, ; defined as follows:

_ Xn,2i + Xn,2i+1
Xn—l,i o 2
d _ Xn2i — Xn2is
n-1i 2

 The averages and differences are applied only on consecutive pairs of input
sequences whose first element has an even index. Therefore, the number of
elements in each set {x,_, ;} and {d,_, ;} Is exactly half of the number of

elements in the original sequence.
58



Form a new sequence having length equal to that of the original

sequence by concatenating the two sequences {X,_, ;} and {d,_, ;}.

The resulting sequence is
* {Xp-1i» do-1 i} ={11.5, 25.5, 25, 11,-1.5,-0.5, 4,-4}

This sequence has exactly the same number of elements as the
Input sequence — the transform did not increase the amount of

data.

Since the first half of the above sequence contain averages from
the original sequence, we can view it as a coarser approximation
to the original signal. The second half of this sequence can be
viewed as the detalls or approximation errors of the first half.

59



It is easily verified that the original sequence can be reconstructed from the

transformed sequence using the relations

Xn, 2i = Xn—l, i + dn—1, i

Xy 2is1 = Xn-1.i = Up-q i

This transform is the discrete Haar wavelet transform.

2 2

| | 9 | | |
-0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5

(a) (b)

Haar Transform: (a) scaling function, (b) wavelet function.

Li, Drew, & Liu © Springer 2021

(8.49)

60



Input image for the 2D Haar Wavelet Transform.
(a) The pixel values. (b) Shown as an 8 x 8 image.

0[0[O0O[O0O[O0O]0O0]O0]O
0[0[0O[O0O[0O]0]O0]O
0|0 |63]127]127|63| 0 | O
0| 0 |127|255|255(127| 0 | O
0|0 |127(255|255(127| 0 | O
0|0 |63]127]127|63|0 | O
00 00 00
00 00 00
(a)

Li, Drew, & Liu © Springer 2021
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0(0]0(O0]0]0]07]O0
0O(0(0]O0]0O0[O0]0]O0
0 [95(95/0 |0 |-32(32]0
0 [191]{191] O | O [-64| 64| O
0 {191|191] O | O |-64| 64| O
0195/95[0 |0 (-32{32]|0
0(0]0(O0O]0]0]07]O0
0O(0(0]O0]0O0[O0]0]O0

Intermediate output of the 2D Haar Wavelet
Transform.

Li, Drew, & Liu © Springer 2021



0O[0]0]010[0(01]0
0 [143]143] 0 | O |-48/48| 0
0 [143]143] O | O |-48|48| 0
0100 ]01O0O[0]0]O0
0100 ]01O0O[0]0]O0
0 [-48|—48| 0 | 0 | 16 |-16| O
0 (4848 0|0 |-16/16]0
0O]0]0]1010[0(0]O0

Output of the first level of the 2D Haar Wavelet
Transform.

Li, Drew, & Liu © Springer 2021
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A simple graphical illustration of Wavelet
Transform.

Li, Drew, & Liu © Springer 2021
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2D Wavelet Transform Example

The input image Is a sub-sampled version of the image Lena. The size of the input is
16x16. The filter used in the example is the Antonini 9/7 filter set

o
o
[«
o
N
N
=iy
.—‘
% |

(a) (b)
The Lena image: (a) Original 128 x 128 image. (b) 16 x 16 sub-sampled image.

Li, Drew, & Liu © Springer 2021
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The input image is shown in numerical form below.
oo (XY) =

First, we need to compute the analysis and synthesis high-pass

filters.

158
164
116
05
101
103
102
99
0g
84
58
56
89
35
89
a4

170
153
149
145
156
153
146
146
140
133
153
141
115

99

98
105

97
91
a0
88
89
94
106
a5
103
107
110
108
188
151
a7
69

104
00
101
105
100
103
00
07
109
84
a1
58
a7
67
51
69

123
124
118
188
165
203
99
144
103
149
94
92
113
35
49
68

130
152
118
123
113
136
121
61
124
43
213
51
104
88
101
53

133
131
131
117
148
146
30
103
54
158
71
Bh
56
88
a7
110

125
160
152
182
170
92
60
107
81
95
73
61
67
128
90
127

132
189
202
185
163

66
164
108
172
151
140

88
128
140
136
134

127
116
211
204
186
192
175
111
137
120
103
166
155
142
136
146

112
106

84
203
144
188
198
192
178
183
138

58
187
176
157
159

158
145
154
154
194
103
46
62
54
46
83
103
71
213
205
154

159
140
127
153
208
178

56

65

43

30
152
146
153
144
106
109

144
143
146
229

39

47

56
128
159
147
143
150
134
128

43
121

h[n] = [-0.065, 0.041, 0.418, -0.788, 0.418, 0.041, -0.065]

~

116
227

58

46
113
167
156
153
149
142
128
116
203
214

54

T2

o1
53
58
147
159
159
156
154
174
201
207
211
05
100
76
113

4 n]= [-0.038,-0.024,0.111,0.377,-0.853,0.377,0.111,-0.024,-0.038]

Li, Drew, & Liu © Springer 2021

(8.70)
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Convolve the first row with both hy[n] and h,[n] and discarding
the values with odd-numbered index. The results of these two
operations are:

(1,,(,0)*h [n]) "2 = [245156,171,183,184,173,228,160]
(1,,.0)*h[n]) "2 = [-30,3,0,7,- 5, 16,- 3,16]

Form the transformed output row by concatenating the resulting
coefficients. The first row of the transformed image is then:

« [245, 156, 171, 183, 184, 173, 228, 160,-30, 3, 0, 7,-5,-16,-3, 16]

Continue the same process for the remaining rows.

67



* The result after all rows have been processed:

245
239
195
180
191
192
176
179
169
155
145
134
127

70
129
103

156
141
147
139
145
145
159
148
159
153
148
152
203
188
124
115

171
181
163
226
197
237
156
162
163
149
158
102
130

63

a7

85

183
197
177
177
198
184
77
129
o7
159
148
70
04
144
06
142

184
242
288
274
247
135
204
146
204
176
164
153
171
191
177
188

173
158
173
267
230
253
232
213
202
204
157
126
218
257
236
234

|00(X,y) -
228 160 —30
202 220 17
200 106 —34
247 163 —-45
230 143 49
169 192 47
51 166 —-31
92 217 -39
85 234 29
65 236 —32
188 215 —55
199 207 —47
171 228 12
215 232 -5
162 77 =2
184 132 37

0

0 7
—20 3
2 19
24 —29
36 —11
36 4
—45 30
50 —10
—42 23
85 30
—-110 28
13 10
27 15
—-28 -9
—48 1
27 -4

-5 —16
26 =27
—50 —35
-2 30
—26 —14
—58 66
11 58
33 51
37 41
358 44
26 48
—76 3
1 76
19 —46
17 —56
5 —35

16
141

_78
_54
—4

-5
—31
_64
_76

85
01
_24
_33

68



Apply the filters to the columns of the resulting image. Apply both hy[n] and h;[n] to each
column and discard the odd indexed results:

(1,,(0,))*h,[n]) ¥ 2 = [353,280, 269, 256, 240, 206,160,153]"
(1,,(0,)*h[n) ¥ 2= [-12,10,-7,-4,2,-1,43,16]

Concatenate the above results into a single column and apply the same procedure to each
of the remaining columns.

|11(X’ y) =
[ 353 212 251 272 281 234 308 280 _33 6 —15 5 24 209 38 1207
280 203 254 250 402 269 207 207 —45 11 —2 0 —31 —26 T4 23

269 202 312 280 316 353 337 227 —70 43 56 —23 —41 21 82 -81
256 217 247 155 236 328 114 283 -52 27 -—-14 23 -2 60 49 12
240 221 226 172 264 2094 113 330 —41 14 31 23 57 60 78 -3
206 204 201 192 230 219 232 300 —-76 67 -—-53 40 4 46 -18 -107
160 275 150 135 244 264 267 331 -2 90 -—-17 10 -24 49 29 89

153 189 113 173 260 342 256 17v6 —-20 18 -38 -4 24 —75 25 -5
—12 i -9 -13 -6 11 12 -69 —-10 -1 14 6 —38 3 —45 —-59
10 3 —-31 16 -1 -51 —-10 -30 2 —12 0 24 32 —45 1009 42
-7 5 —44 -35 67 —-10 —-17 —-15 3 —-15 =28 0 41 -30 -18 -19
—4 9 -1 —-37 41 6 —33 2 9 —-12 —-67 31 -7 3 2 0

2 -3 9 25 2 -25 &0 -8 -11 -4 -—-123 -12 -6 -4 14 -—12
-1 22 32 46 10 48 -11 20 19 32 -59 9 70 50 16 73
43 —-18 32 —-40 —-13 —-23 —-37 -61 g8 22 2 13 —-12 43 -5 —45
16 2 -6 =32 -7 5 —13 -50 24 7 —61 2 11 —-33 43 1




This completes one stage of the discrete wavelet transform. We can perform
another stage of the DWT by applying the same transform procedure illustrated
above to the upper left 8 x 8 DC image of 1,,(X, y). The resulting two-stage
transformed image is

|22(X' y) -

558 451 608 532 75 26 94 25 =33 6 —15 5 24 —290 38 120

463 511 627 566 66 68 —43 68 —45 11 —2 O —31 -26 —-74 23
464 401 478 416 14 84 -—-97 —-229 70 43 56 —23 —41 21 82 -8l
422 335 477 553 —-88 46 -31 -6 =52 27 -14 23 -2 60 49 12

14 33 —-56 42 22 43 -36 1 —41 14 31 23 57 60 -78 —3

—-13 36 54 52 12 -21 51 70 -76 67 =53 40 4 46 -18 -—-107
25 -20 25 -7 -35 35 -56 -—-55 -2 GO0 -—-17 10 —-24 49 20 g9

46 37 -51 51 44 26 39 -—-74 20 18 -3&8 -4 24 75 25 -5
—12 T -9 -13 -6 11 12 -—-69 -10 -1 14 6 —38 3 —45 -—-99
10 3 -31 16 -1 -51 -10 -30 2 —12 0 24 32 —45 109 42
-7 5 —44 -35 67 -10 -17 -—15 3 —15 28 o 41 -30 -18 -19
—4 9 -1 —-37 41 6 —33 2 9 —-12 —-67 31 -7 3 2 0
2 =3 9 —-25 2 —-25 60 - -11 -4 -123 -12 -6 -4 14 -12
-1 22 32 46 10 48 -11 20 19 32 -59 © 70 50 16 73
43 —-18 32 —-40 -13 -23 -37 -61 g 22 2 13 —-12 43 -8 —-45
16 2 -6 =32 -7 5 —13 —-50 24 7 —61 2 11 —-33 43 1
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Haar wavelet decomposition.
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Wavelet functions examples

Scaling Function Wavelet

e Haar
function

 Daubechies
function




Multi-level Decomposition

= [terating the decomposition process, breaks the
iInput signal into many lower-resolution
components: Wavelet decomposition tree:

0-1000 Hz /= ,
———>| Filter 1 =—==> D,: 500-1000 Hz

4@ I_TV Filter 2 D,: 250-500 Hz
. -
& EI :{\/@Iﬂ D,: 125-250 Hz
D

B 7S S Y
E:I D = 0-125 Hz




Discrete Wavelet Transform

Original Image

Decomposition at level 2
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Mexican hat wavelet

Also called the second derivative of
the Gaussian function

0,6
0,4

0,2

f(x)

0,0 — —

1 —t* £2

Fig. 7 The Mexican hat wavelet[5]



Morlet wavelet

¢(t) _ 72_—]/4eimte—t2/2

(D(C()) = 72'_1/4U (C!))e_(a)_m)z/2 U(w): step function

Morlet Wavelet at scale 3 Frequency Spectra of Morlet Wavelet at scale 3
20 . . 500 . .
10} 1 GO0
0 —A/\(UWWMN\/M - 400 t
-10¢ . 200 ¢
=20 . . 0 . .
0 100 200 300 III 100 200 300

Fig. 8 Morlet wavelet with m equals to 3[4]
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Shannon wavelet

Shanmnomn wavelet

WW ¢(t)=sinc(t/2)cos(3xt/2)

tme
FT of the Shannon Wavelet

A 1 05<|f|<1
f)=
#(1) {O otherwise

- freqiency

Fig. 9 The Shannon wavelet in time and frequency domains[5]
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Wavelets Applications

* Noise filtering

* Image compression
— Special case: fingerprint compression

* Image fusion
* Recognition

G. Bebis, A. Gyaourova, S. Singh, and I. Pavlidis, "Face Recognition by Fusing Thermal Infrared and
Visible Imagery", Image and Vision Computing, vol. 24, no. 7, pp. 727-742, 2006.

* Image matching and retrieval

Charles E. Jacobs Adam Finkelstein David H. Salesin, "Fast Multiresolution Image Querying",
SIGRAPH, 1995.



Image Denoising Using Wavelets

Calculate the DWT of the image.

Threshold the wavelet coefficients. The threshold may be
universal or subband adaptive.

Compute the IDWT to get the denoised estimate.

Soft thresholding is used in the different thresholding methods.
Visually more pleasing images.



Application: Image Denoising Using
Wavelets

* Noisy Image: * Denoised Image:

50}
o0l 100
150 150

200 200

250 260

300 300
360 30
400

) &

50 100 150 200 250 300 350 400 450 500



Image Enhancement

* Image contrast enhancement with wavelets, especially
Important in medical imaging

« Make the small coefficients very small and the large
coefficients very large.

* Apply a nonlinear mapping function to the coefficients.



Experiments

(¢) Proposed Method

(a) Original Image



Denoising and Enhancement

Apply DWT

Shrink transform coefficients in finer scales to reduce the
effect of noise

Emphasize features within a certain range using a
nonlinear mapping function

Perform IDWT to reconstruct the image.



Examples

Original Denoised Denoising with Enhancement




DWT for Image Compression

 Image Decomposition
— Feature 1:

 Energy distribution concentrated in
low frequencies

— Feature 2:
» Spatial self-similarity across subbands

s g

— 4 HL,

4
LHsl/HHs N HL1
e
LV HH,
“ >
L
LH, HH, .
The scanning order of the subbands
R for encoding the significance map.




