
Supplementary

The Wavelet Transform



Jean Baptiste Joseph Fourier (1768 – 1830) 

1787: Train for priest (Left but Never married!!!).

1793: Involved in the local Revolutionary Committee. 

1974: Jailed for the first time.

1797: Succeeded Lagrange as chair of analysis and mechanics at É cole

Polytechnique. 

1798: Joined Napoleon's army in its invasion of Egypt.

1804-1807: Political Appointment. Work on Heat. Expansion of 

functions as trigonometrical series. Objections  made by Lagrange 

and Laplace.

1817: Elected to the Académie des Sciences in and served as secretary 

to the mathematical section. Published his prize winning essay Théorie

analytique de la chaleur. 

1824: Credited with the discovery that gases in the atmosphere might 

increase the surface temperature of the Earth (sur les températures du 

globe terrestre et des espaces planétaires ). He established the concept 

of planetary energy balance. Fourier called infrared radiation "chaleur

obscure" or "dark heat“. 

MGP (Mathematics Genealogy Project): Leibniz - Bernoulli - Bernoulli - Euler - Lagrange - Fourier – Dirichlet -

….



Windowed (Short-Time) Fourier Transform (1946)

James W. Cooley and John W. Tukey, "An algorithm for the machine 

calculation of complex Fourier series," Math. Comput. 19, 297–301 (1965). 

Independently re-invented an algorithm known to Carl Friedrich Gauss 

around 1805

Fast Fourier Transform

Dennis Gabor 

James W. Cooley and John W. Tukey 

Winner of the 1971 Nobel Prize for contributions to the principles underlying the 

science of holography, published his now-famous paper “Theory of Communication.”2 

C. F. Gauss

Stephane Mallat, Yves Meyer

Jean Morlet

Presented the concept of wavelets (ondelettes) in its present theoretical form when he 

was working at the Marseille Theoretical Physics Center (France). (Continuous Wavelet 

Transform)

(Discrete Wavelet Transform) The main algorithm dates back to the work of 

Stephane Mallat in 1988. Then joined Y. Meyer.

http://euler.ciens.ucv.ve/matematicos/images/gauss.gif


Some signals obviously have spectral 

characteristics that vary with time

Motivation



STATIONARITY OF SIGNAL

• Stationary Signal
– Signals with frequency content 

unchanged in time

– All frequency components exist at all 
times

• Non-stationary Signal
– Frequency changes in time

– One example: the “Chirp Signal”



STATIONARITY OF SIGNAL

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

0 5 10 15 20 25
0

100

200

300

400

500

600

Time
M

a
g

n
it

u
d

e M
a

g
n

it
u

d

e

Frequency (Hz)

2 Hz + 10 Hz + 20Hz

Stationary

0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
0

50

100

150

200

250

Time

M
a

g
n

it
u

d

e M
a

g
n

it
u

d

e

Frequency (Hz)

Non-

Stationary

0.0-0.4:  20 Hz + 

0.4-0.7: 10 Hz + 

0.7-1.0: 2 Hz



CHIRP SIGNALS
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At what time the frequency components occur?  FT can not tell!





Fourier Analysis

 Breaks down a signal into constituent 

sinusoids of different frequencies

In other words: Transform the view of the signal 

from time-base to frequency-base.



The Fourier Transform (FT)

 A mathematical representation of the Fourier 

transform:

 Meaning: the sum over all time of the signal f(t) 

multiplied by a complex exponential, and the 
result is the Fourier coefficients (ꞷ) .






 dtetfwF iwt)()(



Fourier Transform

 Those coefficients, when multiplied by a sinusoid of 

appropriate frequency ꞷ, yield the constituent 

sinusoidal component of the original signal:



What’s wrong with Fourier?

 By using Fourier Transform , we lose the time 

information : WHEN did a particular event take 

place ?

 FT  can  not locate drift, trends, abrupt changes, 

beginning and ends of events, etc.

 Calculating  use  complex   numbers. 



Short Time Fourier Transform

• Dennis Gabor (1946) Used STFT

– To analyze only a small section of the signal at a time -- a technique called 

Windowing the Signal.

• The Segment of Signal is Assumed Stationary 

• A 3D transform

        dtetttxft ftj

t

  
2*

X ,STFT

  function  window the:t

A function of time 

and frequency



STFT (or: Gabor Transform)

 A compromise between time-based and frequency-based

views of a signal.

 both time and frequency are represented in limited 

precision.

 The precision is determined by the size of the window.

 Once you choose a particular size for the time window - it 

will be the same for all frequencies.



What’s wrong with Gabor?

 Many signals require a more flexible approach - so we 

can vary the window size to determine more accurately 

either time or frequency.



What is Wavelet Analysis ?

 And…what is a wavelet…?

 A wavelet is a waveform of effectively limited

duration that has an average value of zero.



Wavelet's   properties

Short time localized waves with zero integral value.

Possibility of time shifting.

Flexibility.
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Fourier vs. Wavelet

 FFT, basis functions: sinusoids

Wavelet transforms: small waves, called wavelet

FFT can only offer frequency information

Wavelet: frequency + temporal information

 Fourier analysis doesn’t work well on discontinuous, “bursty” data

music, video, power, earthquakes,…



frequency

frequency + time (equal time intervals)

frequency + time



Scale

• Scale

– S>1: dilate the signal

– S<1: compress the signal

• Low Frequency -> High Scale -> Non-detailed Global View of 

Signal -> Span Entire Signal

• High Frequency -> Low Scale -> Detailed View  Last in Short 

Time

• Only Limited Interval of Scales is Necessary



Comparison of resolution

• Windowed Fourier Transform

Fig. 18 the result using Windowed Fourier Transform

21



Comparison of resolution

• Discrete Wavelet Transform

Fig. 19 the result using Discrete Wavelet Transform

22
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STFT and Wavelets
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What is wavelet transform?

Provides time-frequency representation

Wavelet transform decomposes a signal into a set of basis 

functions (wavelets)

Wavelets are obtained from a single prototype wavelet Ψ(t) called 

mother wavelet by dilations and shifting:

 where a is the scaling parameter and b is the shifting parameter

)(
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Wavelet Transform

 The result of the Continuous WT are Wavelet 

coefficients . 

 Multiplying each coefficient by the appropriately scaled 

and shifted wavelet yields the constituent wavelet of 

the original signal:



Scaling
 Wavelet analysis produces a time-scale view of the 

signal.

 Scaling means stretching or compressing of the 

signal.

 scale factor (a) for sine waves:
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Scaling (Cont’d)

 Scale factor works exactly the same with wavelets:
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Wavelet  function
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Wavelet Transform

• Continuous Wavelet Transform (CWT)

• Discrete Wavelet Transform (DWT)



Basis Functions Using Wavelets

Like sin( ) and cos( ) functions in the Fourier Transform, 

wavelets can define a set of basis functions ψk(t):

Span of ψk(t): vector space S containing all functions f(t) 

that can be represented by ψk(t).

( ) ( )k k

k

f t a t



Basis Construction – “Mother” Wavelet

The basis can be constructed by applying translation and 

scaling (stretch/compress) on the “mother” wavelet ψ(t):

scale

translate

Example:

ψ(t) 



Continuous Wavelet Transform (CWT)

 
1

( , )
t

t
C s f t dt

ss
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translation parameter 

(measure of time)

scale parameter 

(measure of frequency)

mother wavelet (i.e., 

window function)normalization 

constant

Forward

CWT:

scale =1/2j

(1/frequency) 
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Five Easy Steps to a Continuous Wavelet Transform

1. Take a wavelet and compare it to a section at the start of the 

original signal. 

2. Calculate a correlation coefficient c
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Five Easy Steps to a Continuous Wavelet Transform

3. Shift the wavelet to the right and repeat steps 1 and 2 until you've covered the 

whole signal.

4. Scale (stretch) the wavelet and repeat steps 1 through 3.

5. Repeat steps 1 through 4 for all scales.



Resolution of Time and Frequency

Time

Frequency

Better time resolution;

Poor frequency 

resolution

Better frequency 

resolution;

Poor time resolution

• Each box represents a equal portion   

• Resolution in STFT is selected once for entire analysis



Visualize CTW Transform
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• Wavelet analysis produces a time-scale view of the input 

signal or image.



Properties of Wavelets

• Simultaneous localization in time and scale

- The location of the  wavelet allows to explicitly represent the location 

of  events in time.

- The shape of the wavelet allows to represent different detail or 

resolution.



Properties of Wavelets  (cont’d)

• Sparsity: for functions typically found in practice, 

many of the coefficients in a wavelet 

representation are either zero or very small.
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Properties of Wavelets  (cont’d)

• Adaptability: Can represent functions with 

discontinuities or corners more efficiently.

• Linear-time complexity: many wavelet transformations 

can be accomplished in O(N) time.



Discretization of CWT

• It is Necessary to Sample the Time-Frequency (scale) Plane.

• At High Scale s (Lower Frequency f ), the Sampling Rate N can be 
Decreased.

• The Scale Parameter s is Normally Discretized on a Logarithmic Grid.

• The most Common Value is 2.

• The Discretized CWT is not a True Discrete Transform

• Discrete Wavelet Transform (DWT)
– Provides sufficient information both for analysis and synthesis

– Reduce the computation time sufficiently

– Easier to implement

– Analyze the signal at different frequency bands with different resolutions 

– Decompose the signal into a coarse approximation and detail information



Discrete Wavelet Transform (DWT)

( ) ( )jk jk

k j
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DFT vs DWT

• DFT expansion:

• DWT expansion

or

one parameter basis

( ) ( )l l

l

f t a t

( ) ( )jk jk

k j

f t a t

two parameter basis



Haar Wavelets

 Scaling functions

Haar scaling function is defined by

and is shown in Figure 1.

Some examples of its translated and scaled versions are

shown in Figures 2-4.
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Fig.1: Haar scaling function (x). Fig.2: Haar scaling function (x-1).

Fig.3: Haar scaling function (2x). Fig.4: Haar scaling function (2x-1).

1D Haar



2D Haar

• 2D Haar scaling: 

• 2D Haar wavelets:



 Wavelets

1.The Haar wavelet  (x) is given by

and is shown in Figure 5.

2.The two-scale relation for Haar wavelet is
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Figure 5: Haar Wavelet   (x) .
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Wavelet expansion

• Wavelet decompositions involve  a pair of 

waveforms:

φ(t)               ψ(t)
encodes low

resolution info

encodes details or

high  resolution info

( ) ( ) (2 )j

k jk

k k j

f t c t k d t k     

scaling function          wavelet functionTerminology:



1D Haar Wavelets 

• Haar scaling and wavelet functions:

computes average

(low pass)

computes details

(high pass)

φ(t)                     ψ(t)



Haar Filter Bank

• The simplest orthogonal filter bank is Haar

• The lowpass filter is

• And the highpass filter
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Two-Channel Filter Banks



The Haar wavelet

•A basis for L2( R) :

Averaging 
and 
differencing



The Haar wavelet



Haar transform
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Haar Wavelet Transform

• Find the average of each pair of samples

• Find the difference between the average and sample

• Fill the first half with averages

• Fill the second half with differences

• Repeat the process on the first half

• Step 1:
[3   5    4    8   13   7   5   3]

[4 6   10   4   -1   -2   3   1]

Averaging

Differencing
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Haar Wavelet Transform

• Step 2

[4   6    10    4   -1   -2   3   1]

[5 7   -1   3   -1   -2   3   1]

ex. (4 + 6)/2 = 5
4 - 5 = -1

Averaging Differencing
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Haar Wavelet Transform

• Step 3

[5   7   -1   3   -1  -2   3   1]

[6 -1   -1   3   -1   -2   3   1]

ex. (5 + 7)/2 = 6
5 - 6 = -1

Averaging Differencing

row average



Wavelet Transform Example

• Suppose we are given the following input sequence.

{xn,i} = {10, 13, 25, 26, 29, 21, 7, 15}

• Consider the transform that replaces the original sequence with its pairwise 

average xn−1,i and difference dn−1,i defined as follows:

• The averages and differences are applied only on consecutive pairs of input 

sequences whose first element has an even index. Therefore, the number of 

elements in each set {xn−1,i} and {dn−1,i} is exactly half of the number of 

elements in the original sequence.

,2 ,2 1

1, 2
n i n i

n i

x x
x








,2 ,2 1

1, 2
n i n i

n i

x x
d







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• Form a new sequence having length equal to that of the original 
sequence by concatenating the two sequences {xn−1,i} and {dn−1,i}. 
The resulting sequence is 

• {xn−1,i, dn−1,i} = {11.5, 25.5, 25, 11,−1.5,−0.5, 4,−4}

• This sequence has exactly the same number of elements as the 
input sequence — the transform did not increase the amount of 
data.

• Since the first half of the above sequence contain averages from 
the original sequence, we can view it as a coarser approximation 
to the original signal. The second half of this sequence can be 
viewed as the details or approximation errors of the first half.

59



• It is easily verified that the original sequence can be reconstructed from the 
transformed sequence using the relations

xn, 2i = xn−1, i + dn−1, i

xn, 2i+1 = xn−1, i − dn−1, i

• This transform is the discrete Haar wavelet transform.

Haar Transform: (a) scaling function, (b) wavelet function.

Li, Drew, & Liu   ©  Springer 2021

(8.49)
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Input image for the 2D Haar Wavelet Transform.

(a) The pixel values. (b) Shown as an 8 × 8 image.

Li, Drew, & Liu   ©  Springer 2021 61



Intermediate output of the 2D Haar Wavelet 

Transform.

Li, Drew, & Liu   ©  Springer 2021 62



Output of the first level of the 2D Haar Wavelet 

Transform.

Li, Drew, & Liu   ©  Springer 2021 63



A simple graphical illustration of Wavelet 

Transform.

Li, Drew, & Liu   ©  Springer 2021 64



2D Wavelet Transform Example

The input image is a sub-sampled version of the image Lena.  The size of the input is 

16×16. The filter used in the example is the Antonini 9/7 filter set

The Lena image: (a) Original 128 × 128 image. (b) 16 × 16 sub-sampled image.

Li, Drew, & Liu   ©  Springer 2021 65



• The input image is shown in numerical form below.

• First, we need to compute the analysis and synthesis high-pass 
filters.

Li, Drew, & Liu   ©  Springer 2021

00I (x,y) =

1[ ] = [-0.065, 0.041, 0.418, -0.788, 0.418, 0.041, -0.065]h n

(8.70)
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• Convolve the first row with both h0[n] and h1[n] and discarding 

the values with odd-numbered index. The results of these two 

operations are:

• Form the transformed output row by concatenating the resulting 

coefficients. The first row of the transformed image is then:

• [245, 156, 171, 183, 184, 173, 228, 160,−30, 3, 0, 7,−5,−16,−3, 16]

• Continue the same process for the remaining rows.

(I
00

(:,0)*h
0
[n])¯2 =  [245,156,171,183,184,173,228,160]

(I
00

(:,0)*h
1
[n])¯2 =  [-30,3,0,7,-5,-16,-3,16]

67



• The result after all rows have been processed:

00( , ) I x y 

68



• Apply the filters to the columns of the resulting image. Apply both h0[n] and h1[n] to each 

column and discard the odd indexed results:

• Concatenate the above results into a single column and apply the same procedure to each 

of the remaining columns.

11( , ) I x y 

11 0( (0,:)* [ ]) 2 [353,280,269,256,240,206,160,15 ] 3 TI h n  

11 1( (0,:)* [ ]) 2 [ 12,10, 7, 4,2, 1,43,16] TI h n      

69



• This completes one stage of the discrete wavelet transform.  We can perform 

another stage of the DWT by applying the same transform procedure illustrated 

above to the upper left 8 × 8 DC image of I12(x, y). The resulting two-stage 

transformed image is

22( , ) I x y 

70



Haar wavelet decomposition.

71



Wavelet  functions examples

• Haar  
function

• Daubechies 
function



Multi-level Decomposition

 Iterating the decomposition process, breaks the 

input signal into many lower-resolution 

components: Wavelet decomposition tree:

0-1000 Hz

D2: 250-500 Hz

D3: 125-250 Hz

Filter 1

Filter 2

Filter 3

D1: 500-1000 Hz

A3: 0-125 Hz

A1

A2

X[n]

512

256

128

64

64

128

256
SS

A1

A2 D2

A3 D3

D
1
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Discrete Wavelet Transform

LL2 HL2

LH2 HH2
HL1

LH1 HH1



Mexican hat wavelet
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Fig. 7 The Mexican hat wavelet[5]

Also called the second derivative of 

the Gaussian function
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Morlet wavelet
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  U(ω): step function

Fig. 8 Morlet wavelet with m equals to 3[4]
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Shannon wavelet

     sinc 2 cos 3 2t t t 
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

Fig. 9 The Shannon wavelet in time and frequency domains[5]
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Wavelets Applications

• Noise filtering

• Image compression

– Special case: fingerprint compression

• Image fusion

• Recognition
G. Bebis, A. Gyaourova, S. Singh, and I. Pavlidis, "Face Recognition by Fusing Thermal Infrared and 

Visible Imagery", Image and Vision Computing, vol. 24, no. 7, pp. 727-742, 2006. 

• Image matching and retrieval
Charles E. Jacobs Adam Finkelstein David H. Salesin, "Fast  Multiresolution Image Querying", 

SIGRAPH, 1995. 



Image Denoising Using Wavelets

• Calculate the DWT of the image.

• Threshold the wavelet coefficients. The threshold may be 

universal or subband adaptive.

• Compute the IDWT to get the denoised estimate.

• Soft thresholding is used in the different thresholding methods. 

Visually more pleasing images.



Application: Image Denoising Using 

Wavelets
• Noisy Image: • Denoised Image:



Image Enhancement

• Image contrast enhancement with wavelets, especially 

important in medical imaging

• Make the small coefficients very small and the large 

coefficients very large.

• Apply a nonlinear mapping function to the coefficients.



Experiments



Denoising and Enhancement

• Apply DWT

• Shrink transform coefficients in finer scales to reduce the 

effect of noise

• Emphasize features within a certain range using a 

nonlinear mapping function

• Perform IDWT to reconstruct the image.



Examples

Original Denoised Denoising with Enhancement



DWT for Image Compression

• Image Decomposition
– Feature 1: 

• Energy distribution concentrated in 
low frequencies

– Feature 2:

• Spatial self-similarity across subbands

HL1

LH1 HH1

HH2
LH2

HL2

HL3
LL3

LH3 HH3

The scanning order of the subbands 

for encoding the significance map.


